PAT Advanced 1002. A+B for Polynomials (25) (C语言实现)
题目
This time, you are supposed to find $A+B$ where $A$ and $B$ are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
$K$ $N_1$ $a_{N_1}$ $N_2$ $a_{N_2}$ … $N_K$ $a_{N_K}$
where $K$ is the number of nonzero terms in the polynomial, $N_i$ and $a_{N_i}$ ( $i=1, 2, \cdots , K$ ) are the exponents and coefficients, respectively. It is given that $1 \le K \le 10$ , $0 \le N_K < \cdots < N_2 < N_1 \le 1000$ .
Output Specification:
For each test case you should output the sum of $A$ and $B$ in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
1
2
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
1
3 2 1.5 1 2.9 0 3.2
思路
最初由于数学概念的理解错误,纠结了半天。0是零多项式,在题中将之归于“0项”多项式。当然了,实际是没有0项多项式的,只有零多项式,但是非要输出个结果,0还是合理的。我一开始把0当成只有常数项的一项多项式,结果最后一测试点老过不去。。。。
很多人都用1000长度的数组存储多项式,确实思路简单,且并不是很浪费空间。我用了另一种思路,用数组模仿链表的实现。将A、B两多项式由次数从高到低依次计算,存入新数组。
疑问:最初最后一个测试点没过的时候,我以为又是小负数近似格式的问题(见PAT Basic 1051. 复数乘法 (15)(C语言实现)),便将系数绝对值小于0.05的项全忽略了。当然这么做也通过了,可能输入保证了精度也只有1位小数,这样就没有这个必要了。
代码
Github最新代码,欢迎交流
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <stdio.h>
#include <math.h>
typedef struct Poly {
double coef;
int exp;
} Poly[20];
int main()
{
int KA, KB, Ksum = 0;
Poly A, B, sum;
scanf("%d", &KA);
for (int i = 0; i < KA; i++)
scanf("%d %lf", &A[i].exp, &A[i].coef);
scanf("%d", &KB);
for (int i = 0; i < KB; i++)
scanf("%d %lf", &B[i].exp, &B[i].coef);
int i = 0, j = 0;
while (i < KA || j < KB) {
if (i == KA || (j < KB && A[i].exp < B[j].exp)) {
sum[Ksum].exp = B[j].exp;
sum[Ksum].coef = B[j++].coef;
} else if (j == KB || (i < KA && A[i].exp > B[j].exp)) {
sum[Ksum].exp = A[i].exp;
sum[Ksum].coef = A[i++].coef;
} else {
sum[Ksum].exp = A[i].exp;
sum[Ksum].coef = A[i++].coef + B[j++].coef;
}
if (fabs(sum[Ksum].coef) >= 0.05)
Ksum++;
}
printf("%d", Ksum);
for (int i = 0; i < Ksum; i++)
printf(" %d %.1lf", sum[i].exp, sum[i].coef);
return 0;
}